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Abstract-The vortex instability characteristics of laminar boundary-layer flow in natural convection on 
inclined flat plates heated from below, under the variable surface temperature T,(x) - TX = Ax”, are 
studied analytically by the linear theory. The analysis is performed by using the non-parallel flow model 
in which the steady main flow is treated as two-dimensional and account is taken of the streamwise 
dependence of the disturbance amplitude functions. Neutral stability curves as well as critical Grashof 
numbers and the corresponding critical wave numbers are presented for fluids having Pr = 0.7 and 7 over 
the range of inclination angles, 0’ < 4 < 70” from the horizontal, for a range of the exponent values n 
from - l/3 to 1. For a given Prandtl number and a given exponent value n, the flow is found to become 
more stable to the vortex mode of instability as the inclination angle increases from the horizontal. In 
addition, the local non-similarity non-parallel flow model provides a larger critical Grashof number than 
that of the local similarity non-parallel flow model. Results from the present non-parallel flow analysis are 
compared with previous results from the parallel flow analyses and with available experimental data. The 
streamwise dependence of the disturbances leads to a stabilization of the main flow, which brings the 

present predictions to a close and qualitative agreement with available experimental data. 

INTRODUCTION 

A FLOW pattern, laminar or transitional or turbulent, 
strongly affects the thermal transport process in con- 
vective heat transfer. For this reason, the study of 
flow instability or transition is of primary importance. 
Extensive experimental and analytical studies on the 
instability of natural convection flow over inclined, 
upward-facing heated surfaces have been performed 
(see, for example, refs. [l&1.5]). The instability of the 
flow that occurs as the result of a secondary flow in 
the form of longitudinal vortex rolls is due to the 
presence of a buoyancy force component that acts in 
the direction normal to the plate. From the exper- 
imental work of Lloyd and Sparrow [2] on natural 
convection flow in water over inclined heated plates, 
it was found that for inclination angles less than 14” 
from the vertical, the instability is characterized 
by the Tollmien-Schlichting wave mode, whereas the 
instability is characterized by the longitudinal vortex 
mode for inclination angles larger than 17” from 
the vertical. In the range between 14” and 17”, the 
two modes of instability were found to coexist in 
this zone of continuous transition. Their experimental 
finding has led to many analytical studies on the vor- 
tex instability for such a flow configuration. 

In most of the analytical studies [3-61 on the vortex 
mode of instability of laminar flow over inclined 
heated plates, the main flow and thermal fields 
employed in the analyses were approximated by the 
similarity solution for a vertical flat plate ; that is, the 
normal component of the buoyancy force that induces 
the streamwise pressure gradient in the main flow was 

neglected. This approximate analysis yielded con- 
siderable errors in the critical Grashof numbers when 
the angles of inclination from the horizontal are small, 
as was reported in a recent study by Chen and Tzuoo 
[lo] who employed a new main flow solution for the 
non-similar boundary layer in their analysis. Their 
study is an improvement over the previous analyses, 
but as in the other earlier studies the streamwise 
dependence of the disturbances was not taken into 
account. Thus, in all of the analytical studies [3-6, 10, 
1 I], a linear parallel flow model is employed, in which 
the amplitude functions of the disturbances are 
assumed to be independent of the streamwise co- 
ordinate. The parallel flow analysis has provided criti- 
cal Grashof numbers that are two to three orders of 
magnitude lower than the experimental values. There 

is strong evidence from recent studies on the vortex 
instability of natural convection flow over a horizon- 

tal flat plate [15] and the vortex instability of forced 
convection flow [16-l 81 to indicate that the non-par- 
allel flow analysis will yield more realistic predictions 
of the instability characteristics, when compared with 

experimental data, than the parallel flow analysis. This 
has motivated the present study. 

In the present study, attention is focused on the 
vortex instability of natural convection flow over 
inclined, upward-facing heated plates by employing 
the non-parallel flow model in which account is taken 
of the streamwise variation of the disturbances. The 
surface temperature of the plate is treated as non- 
uniform and varies as T,,,(x) - T, = Ax”. In the analy- 
sis, the disturbance quantities are properly scaled and 
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NOMENCLATURE 

ct dimensionless wave number of Greek symbols 
disturbance, CLX-~‘~ c1 dimensionless wave number of 

D partial derivative with respect to n disturbances, 2741” 

.f reduced stream function, B volumetric coefficient of thermal 
$(I, y)/[Sv(Gr, cos 4/S) “1 expansion 

9 gravitational acceleration E dimensionless parameter, 

Gr, local Grashof number, (Gr,~ cos 4/S) I:5 
gfl[T,(.x) - T&3/V V pseudo-similarity variable, 

Gr,. Grashof number based on L, (y/x)(Gr, cos 9/S)“’ 

g/W,(L) - T, w’l~‘* 0 dimensionless temperature, 
k thermal conductivity (T- T,.)IV,(-x) - T/l 
L characteristic length K thermal diffusivity of fluid 

n exponent in the power-law variation of /L dimensionless wavelength 
the wall temperature p dynamic viscosity of fluid 

NK local Nusselt number V kinematic viscosity of fluid 

P’ disturbance pressure 5 non-similarity parameter, 
P mainflow pressure (Gr, cos 4/S) “‘tan 4 
Pr Prandtl number P density of fluid 

YW local surface heat flux 0 function, &/a< 
t dimensionless amplitude function of r function, at/f?( 

temperature disturbance rW local wall shear stress 

t’ disturbance temperature angle of inclination from the horizontal 

T main flow temperature $ stream function 
u, L’, w dimensionless amplitude functions of W function, &/at. 

velocity disturbance in the X-, J-, Z- 

directions, respectively Superscripts 
li, l”, M’I streamwise, normal, and spanwise + dimensionless disturbance quantity 

components of disturbance velocity - scale quantity defined by equation (20) 

U, V streamwise and normal velocity * critical condition or dimensionless main 

components of main flow in the .x-, y- Row quantity 
directions, respectively resultant quantity. 

X, I’, Z streamwisc, normal, and spanwise 
coordinates Subscripts 

X, Y, Z dimensionless streamwise, normal, 0 dimensionless amplitude function 

and spanwise coordinates, defined, W condition at the wall 

respectively, as .x/L, y/(EL), z/(EL). co condition at the free stream. 

the resulting partial differential equations for the dis- 
turbance amplitude functions, along with the bound- 
ary conditions, are converted into an eigenvalue prob- 
lem by employing either the local similarity (three- 
equation) non-parallel flow model or the local non- 
similarity (six-equation) non-parallel flow model. The 
eigenvalue problem for each model is solved numeri- 
cally by an efficient finite-difference method [19] 
in conjunction with Miiller’s shooting iteration 
technique. 

Numerical results of interest, such as the neutral 
stability curves, critical Grashof numbers, and critical 
wave numbers are presented for fluids having Prandtl 
numbers of Pr = 0.7 and 7 over the inclination angles 
from the horizontal, 0’ ,< 4 < 70”, and a range of the 
exponent values, - l/3 < n < I. The present results 
from the local similarity and the local non-similarity 
non-parallel flow models are compared with those 

from the previous studies based on the parallel flow 
model and with available experimental data. 

ANALYSIS 

The main ,flow and thermal$elds 
As the first step in the analysis of the vortex insta- 

bility of the flow, attention is directed to the main flow 
and thermal fields. Consider an inclined flat plate 
which makes an acute angle 4 from the horizontal, 
with its heated surface facing upward in an otherwise 
quiescent fluid at temperature T,. The physical co- 
ordinates are chosen such that x is measured from the 
leading edge of the plate and y is measured normal to 
the plate. The surface temperature of the plate varies 
as T,.,(x) - T, = Ax” where A and the exponent n are 
real constants. Under the assumption of constant fluid 
properties and using the Boussinesq approximation, 
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the governing conservation equations for the main 

flow and thermal fluids can be written as [20] 

f”‘+@~+3),~-(2n+l)(f’)~+@ 

a 

@dvl 

+(n+?)ir ;drl] = (n+?)+‘$ +“$] (I) 

.f’(5> 0) = 0, f(5?0) + 5 G-(5> 0)/X = 0, 

.f’(5, co) = 0, 0(&O) = 1, 0(5> a) = 0 (3) 

where the pseudo-similarity variable ~(x, y), the non- 
similarity parameter t(x), the dimensionless stream 
function ,f’(t, q), and the dimensionless temperature 

O(t, q) are defined, respectively, as 

r/ = (y/x)(Gr, cos d/S)“, 

t(x) = (Gr, cos 4/S) “’ tan 4, 

.f(5, I) = $(x3 .M5v(Gr, cos 4Y5) “I, 

et, ‘1) = u- ~cc)/[~,c+ TKJ (4) 

with Gr, = gb[T,(x) - T,]x3/v2 denoting the local 

Grashof number and the angle C$ being measured 
from the horizontal. The non-similar parameter t(x) 
measures the combined effects of buoyancy force 
(Gv,) and inclination angle (4) on the flow and heat 
transfer characteristics. In equations (l)-(3) the 
primes stand for partial differentiations with respect 
to q and Pr is the Prandtl number. Other notations 
are as defined in the Nomenclature. 

Equations (l)-(3) were solved by an efficient finite- 
difference method [19] in conjunction with the cubic 
spline interpolation scheme to provide the main flow 
quantities that are needed in the instability cal- 
culations and to provide other physical quantities, 
such as the local Nusselt number Nu,, the local wall 
shear stress z,, and the axial velocity distribution u. 
In terms of the dimensionless variables, these quanti- 
ties can be expressed, repectively, by 

Nu,(Gr, cos 4/S)- ‘js = -0’(<, 0), 

7,Jx2/5~~v)(Gr, cos 4/S)- 3’5 = f”(<, 0), 

(~~/5v)(Gr,cos~/5)~~~~ =f’(t,q). (5) 

It is noted here that the case of uniform wall tem- 
perature (UWT) corresponds to n = 0. 

Formulation of the stability problem 

In the present study, the linear non-parallel flow 
stability theory is employed in the analysis. In exper- 
iments [l, 21 the vortex rolls have been found to be 
unchanging with time and periodic in the spanwise 

direction. Thus, the disturbance quantities for velocity 

components u’, u’, w’, pressure p’ and temperature t’ 
are assumed to be a function of (x, y, z), independent 
of time. These disturbance quantities are super- 
imposed on the steady, two-dimensional main flow 
quantities U, V, W = 0, P and T to obtain the follow- 
ing resultant quantities ii, p, I@, p, and f: 

fi(x, y, z) = U(x, y) + u’(x, y, 2) 

Qx, y, 4 = V(x, Y) + v’(x, y> 4 

l&(x, I’, z) = w’(x, y, z) 

&, y> z) = P(x, y) +p’(x, y, z) 

0% y, 4 = T(x, Y) + t/(x, y, 4. (6) 

Thus, the disturbance quantities are considered to 
be dependent on the streamwise coordinate x, in 
addition to the normal (y) and spanwise (z) co- 
ordinates. This is in contrast to most previous studies 
in which the disturbances are taken to be independent 

of x. The resultant quantities given by equation (6) 
satisfy the continuity equation, the Navier-Stokes 

equations, and the energy equation for an in- 
compressible, three-dimensional steady fluid flow. 
Substituting equation (6) into these equations, sub- 
tracting the two-dimensional main flow, and linear- 
izing the disturbance quantities, one can arrive at the 
following disturbance equations : 

(7) 

+~V~~‘+g/?sin&’ (8) 

av ad 
u’T&+“~+” ,,2!+@! = 1 w 

ay ay P ay 

+vv2u’+ggcos bt’ (9) 

ug + yaw = _ L “ir) + “V2w’ 
ay p az (10) 

aT at’ 
u~iir+u~+C’~+Vt=m 

all ay (11) 

where V2 = a2/ax2 + a’/ay’+ a’/az* is the Laplacian 
operator. 

Since the disturbances are confined within the 

boundary layer of the main flow, the so-called bottling 
effect by Haaland and Sparrow [4], the disturbances 
will have length scales different from those of the 
main flow field [ 12, 131. To verify this, the disturbance 
equations are first nondimensionalized by using the 
length and velocity scales of the main flow. The co- 
ordinates are scaled as 

where& = (Gr,cos 4/S)-“‘and Gr, = gb[T,(L)- T,]L3/ 

v2 is the Grashof number based on the character- 
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istic length L(x). If L = x, then Y = q and Gr, = Gr,. 
Other main flow quantities are scaled as 

UC2L 
U* =- 

T- T, 

v ’ 
V* = YEL, 0 = _____ 

V Tw (4 - Tx 
(13) 

where U*, V*, and 0 and their derivatives with respect 
to X and Y are of the order of 1. Similarly, the dis- 
turbance quantities can be scaled as 

u+ - 
U’E’L 

Vf - 
v’2L W’E2L 

V ’ v ’ 

\,‘+ = ~ 
v ’ 

p+ = P’E3L2 t’ 

’ ‘+ = T&-T, (14) 
P 

where u+, v+, u’+, p+, and t+ and their derivatives &*U+ 
av* 

with respect to X and Y are of the order of E. 
ax +E1’2c’*$ +EV+ 

av* 
-ar + E 

Substituting the above dimensionless variables 
from equations (12)-(14) into equations (7)-(11) one 

arrives at 

Lp+ 2 azv+ azv+ azv+ 
= --E,p+E p+F+F+5’+ (23) 

au+ av+ aw+ 
Eax+ar+z=O (15) 

ap+ ah+ ah+ 
= __E-fE*- ~ 

ax ax* + at-2 

a2u+ 5 
+ az? + s tan 4t’ (16) 

ii2v+ a2v+ 
= -g+E2++p 

a%+ 5 
+s +;t+ (17) 

ah+ a*w+ 
+ ay* + a22 ~ ~ (18) 

(2, y, i?,p+) = (x, Y, z,p+)E- ‘I2 (20) 

one has 

au* au+ au* au+ 
EU+ ax +E”*u*x +v+ ay- +e”*V*~ 

2ap+ *a%+ ah+ a%+ 

= -E aR+& -+-+,2,+5tan&+ 
ax2 aY2 

(2-9 

ap+ ,@wf a2w+ azw+ 
= -E~+E-F+,Pz+F (24) 

ae at+ a0 
EU+ a~+““2u*~ +V+ ar+E 

112V*at+ 
ay 

=; E’$+g+g . 

[ 1 (25) 

Because the terms edu+/dz, s’L@+/a~, e2a2u+/ 
@, E2a2v+/aB2, E2a2W+/a82, and E2a2tf/a82 in 

equations (21)-(25) are smaller than the rest of the 
terms in their respective equations, they can be 
omitted. The omission of these lowest order terms 
in the disturbance equations is consistent with the 
level of approximation of the main flow. With the 

above-mentioned terms deleted and by making use of 
equation (20), the disturbance equations are reduced 

to 

(26) 

- * 

E’$+$+$ 1 (19) 
a+ gm + U* g + (Gr, cos c#I/~)“‘v’ g + V* gi 

The terms (v+/e) &!J*/aY and (S/E) tan &+ in equa- 
tion (16), the term 5t+/E in equation (17), and the 
term (v+/e) %)/a Y in equation (19) are larger than the 
other terms in the corresponding equations by at least 
an order of (l/~). This means that the (A’, Y, Z) 
variables as defined in equation (12) are not the appro- 
priate normalization scales for the disturbances. 
Therefore, by resealing the coordinates for the dis- 
turbance quantities and the disturbance pressure with 
the form 

azu+ a2u+ 
=7+ 

ay 
dZ2 + 5(Gr, cos 4/S) “’ tan qbt’ (27) 

av* au+ av* 
(Gr,cos~/5)m’.‘5u+~+U*~+“+ =+“*g; 

= -f& + g + f$ +5(Gr,cosf$/5)“‘t+ (28) 

u*!!!c+v*a~~ _3c+ec+ t$ (2% 
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Next, the pressure terms in equations (28) and (29) 
are eliminated by cross differentiation and subtrac- 
tion. The resulting equation is then differentiated 
with respect to Z once and the substitution 
&+/aZ = - &~+/a Y from the continuity equation is 
employed to remove the terms involving the function 

W + and its derivatives. This sequence of operations 
will yield three equations for the disturbance quanti- 

ties u+, v+, and t+. For the non-parallel flow model 
considered here, these quantities are expressed as 

&+,I,+, t’) = h&K Y),v,(X, Y), t&K Y)lexpGZ) 
(31) 

where IL is the dimensionless azimuthal wave number 

of the disturbances. Thus, the longitudinal vortex rolls 
are taken to be periodic in the spanwise Z-direction, 
with the amplitude functions depending on both X 
and Y. 

Substituting equation (31) into equation (27) the 
combined form of equations (28) and (29) as 
described above, and equation (30), along with intro- 
ducing the coordinate transformation from (X, Y) to 
(X, 4) through the relationship 

(32) 

and letting 

a* = **2X4/5, 24 = UC], U = L’“, t = t,,X”5 (33) 

one obtains the following system of partial differential 
equations for the disturbance amplitude functions u, 
v, and t : 

= 51.‘X~(D’a)+Sf”X~~(Dv)-Sor’f’X~ (35) 

D2t+&Dt+;i,t+&,u+&4tl= 5Prf.X;. (36) 
/ 

The corresponding boundary conditions are 

u=Y=D~~=t=O atq=Oandco. (37) 

In equations (34)-(36) the coefficients d,, . , &, 
& ,,..., l?,, and L? ,,..., 2, are the mainflow quantities 
that are functions of (5, n). These coefficients will 
be defined later. Also, D” stands for the kth partial 
derivative with respect to r). The boundary conditions 
(37) arise from the vanishing of the disturbances at 

the wall and in the free stream. The condition Du = 0 

results from the continuity equation (26) along with 
w=Oatq=Oandco. 

Next, since the mainflow and thermal fields are 
expressed as functions of (5, q), it is convenient to 
express the disturbance amplitude functions u, c’, and 
t also as functions of (5, q). From the l(X) relation- 
ship, one has 

In terms of (5, r~), equations (34)-(36) reduce to 

D*u+a:Du+a;u+&+a:t = 3j”‘{$ (39) 

D4u+b~D3v+6~D2v+b;Dv+b~v+&+b~t 

= 3j+D2v)+3f..~$(D1)3a2~~~ (40) 

D*t+dtDt+d;t+d;u+d:v = 3Plf’r$ (41) 

along with boundary conditions given by equation 
(37). The coefficients in equations (39)-(41) are 
defined by 

a$ = 2qf”-f’--a2 -35 af’lag, 

a: = - Sf”(Gr, cos $15) Iis, a$ = 55, 

b: = Jf’+3[~J’ai’, bf = 5f-2c(2+3~~f”j?~, 

b: = 2f”-3a2(f+<iifia<), 

bf = ~“+cr*(2rlf”-f’-35a~‘jag), 

b: = (~‘/5)(Gr,cos~/5)~ ‘l’(6f-2nf 

-4a~f”+12~5a~‘jag-125~~a5-952a’fiai’*), 

bg = - 5a2(Gr, cos 4/S) ‘Is, 

d: = 3Pr(f’+5af;iag), d; = Prf’-cr2, 

d; = (Pr/5)(2@ - 35 aejag), 

d: = - Pr O’(Gr, cos 4/S) ‘I’. (42) 

Equations (39)-(41) along with boundary con- 
ditions (37) represent the mathematical system for 
the stability problem. Since equations (39))(41) are 
partial differential equations, the boundary condi- 
tions as given by equation (37) are not sufficient if the 
5 derivatives of u, u, and t are not set equal to zero. 
Two of the simple methods that can be used to solve 
such a system of equations are the local similarity and 
the local non-similarity methods [21, 221. It is noted 
that when the terms on the right-hand side of equa- 
tions (39)-(41) are deleted, the resulting equations 
along with boundary conditions (37) provide a system 
of three equations for the local similarity non-parallel 
flow model (the three-equation model). To obtain a 
system of equations for the local non-similarity non- 
parallel flow model, one first introduces 
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au au at 
“=@ “=z’ r=z. (43) 

Equations (39)-(41) and (37) are then differentiated 
with respect to 5 once to obtain equations for 0, w, 
and r. If the terms involving &r/at, ao/ag, and &/a[ 
in these equations are neglected (i.e. truncated), one 
can arrive at the following system of homogeneous 
‘ordinary differential equations’ for the disturbance 
amplitude functions U, z), t, 0, w, and r : 

D’u+a,Du+u2u+u,D+a,tS-aja = 0 (44) 

D4~+b,D3~+b2D2~~+h1Dz’+b4z’+hSu 

+b,t+b,D*w+b,Dw+b,w = 0 (45) 

D’t+d,Dt+dzt+u’,u+d,tl+u’,z = 0 (46) 

DZ~+e,D~+ezrr+e,cu+c~~+~~D~ 

+e,u+e,v+e,t = 0 (47) 

D4~+,f’,D3~+,fZDZ~+f?D~ 

+f4~+,f~ff+fh~+f;D~~l+fXD’~; 

+.fqDv +.f, or i-f, , u +j’, 2 t = 0 (48) 

D*T+y,Dt+y,T+~~,a+,~,w-tg,Dt+g,t 

+g,u+g& = 0 (49) 

with the boundary conditions 

atq=Oanda. (50) 

The coefficients in equations (44)-(49) are defined in 
the Appendix. 

The system of coupled differential equations (44) 

(49) along with the homogeneous boundary con- 
ditions (50), now constitutes an eigenvalue problem 
of the form 

_!?(a, Gr, ; qb, Pr, n) = 0. (51) 

This is the local non-similarity non-parallel flow 
model (the six-equation model). 

For given values of the exponent n, Prandtl number 
Pr, and inclination angle 4, the value of wave number 
x satisfying equation (51) is sought as the eigen- 
value for a prescribed value of the Grashof number 
Gr, or the non-similarity parameter t = (Gr, cos qb/ 
5)“’ tan f$. 

NUMERICAL METHOD OF SOLUTIONS 

The system of equations for the main flow and ther- 
mal fields, equations (l)-(3), was solved by a finite 
difference scheme in conjunction with a cubic spline 
interpolation procedure similar to, but modified from 
that described in ref. [I91 to provide the main flow 
quantities f, f’, ,f”, 8, 0’, and their partial derivatives 
with respect to 5 that are needed in the stability com- 
putations and in the determination of the local Nusselt 
number and the local wall shear stress. The stability 

problem, either consisting of equations (39)-(41) with 
their terms on the right-hand side deleted and equa- 
tion (37), the three-equation local similarity non-par- 
allel flow model, or consisting of equations (44)-(50) 
for the six-equation local non-similarity non-parallel 

flow model, was solved by a finite difference scheme 
along with Miller’s shooting method. The solution 

method parallels that described in ref. [19] and, to 
conserve space, is not repeated here. 

To proceed with the numerical calculations of the 

stability problem, the boundary conditions at q = qX, 
need to be approximated by the asymptotic solutions 
of equations (39))(41) with their terms on the right- 
hand side deleted, the three-equation model, or of 

equations (44))(49) for the six-equation model at 
9 = q,, (i.e. at the edge of the boundary layer). In the 
six-equation model, since the mainflow quantities ,f”, 
,f’“, (I, (I’, and their t derivatives are zero at r) = q,_, 
the asymptotic solutions for U, ~1, t, (T, w, and T at 
q = nT can be obtained as 

u2=exp(-rnql), u,=exp(-rq.), 24, =u,=O, 

L’, = exp(-xql), 21~ = expi-mrl,.), 

L’) = exp (--rrl=,), uq = rl- exp (--mrl I ), 

t? = exp(-rq=), t, = tz = t4 = 0, 

crz=exp(-fnq,), a,=exp(-rq,), fr, =a,=O, 

w, = 0, w2 = exp(-mq,), 

wi = exp(-rr?,), w4 = V, exp(-mrl,), 

Tj =eXp(-PY.,), T, = T2 =T,, = 0 (52) 

where 
r = {-PrC+[(PrC)‘+4a’]“‘)/2 

i?T= j-C+[C*+4a2]“2}/2 (53) 

with C= -3f’(<,q.). 

At any q location, the solutions for u, c, t, (T, w, 
and T are written as 

~(5, I) = K, ~1 (L a) + K+2(5r II) 

+ K,u,(5> V) + 0,(5> V) 

c(5,~) = K,~,(~,~)+K?v?(S~~) 

+ Q,(5> 0) + &v,(5,~) 

I = K,t,(Lrl)+K,tz(Lg) 

+&t3(L)?)+&t4(5>r) 

~(5, I?) = K, 0 I (5,~) + K,o,(5> rl) 

+ K,a,(t> VI+ K,~,(t> 4 

~(5, YI) = K,w,(t> ~1 +K,w,(t, ‘11 

+KA(~~v)+Ko~(<,v) 

T(‘& v) = K, T I (5, rl) + Kz~>(ts a) 

+K,~,(5,rl)+K,z,(5,rl) 
(54) 

where K,, K2, KZ, and Kj are constants. In the three- 
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equation local similarity model, the asymptotic solu- 
tions for u, v, and t at q = q, can be obtained in the 

same manner as shown in equations (52). 
The stability problem is solved as follows. With a 

preassigned value of n, the main flow solution is first 
obtained for a given Prandtl number Pr and a fixed 
non-similarity parameter 5 = (Gr, cos 4/S) ‘I5 tan 4. 
Next, with the angle 4 selected, the Grashof number 
Gr, = (5/cos 4)([/tan 4)’ is specified. With this 
known value of Gr, and a guessed value of the wave 

number a as the eigenvalue, the finite difference form 
of equations (39))(41) with their terms on the right- 
hand side deleted, the three-equation model, or the 
finite difference form of equations (44))(49) for the 
six-equation model is numerically solved from q = 0 

to VlX. ending with the asymptotic solutions for u, a, 
I at ye = rlX for the three-equation model or for u, v, 
t, r~, w, and T at q = qx for the six-equation model. 

The guessed eigcnvalue a is then corrected by Miller’s 
shooting method until the boundary conditions at the 
wall (g = 0) are satisfied within a certain specified 
tolerance. This yields a converged c( value as the eigen- 
value for the given values of IZ, Pr, qb, and Gr,. 

After some experiments with the numerical solu- 
tions for the three-equation model, a step size of 
Aq = 0.01 and a value of qL = 10 were found to pro- 
vide accurate numerical results for both the main flow 
and stability calculations for all inclination angles 4. 
As for the numerical solutions of the six-equation 
model, a step size of Aq = O.Oi and a value of rIX = 10 
were also found to be sufficient for all inclination 
angles C#J larger than 10 for Pr = 7 and 15” for 

Pr = 0.7. However, for smaller angles of inclination, 
a smaller step size Ay is needed to provide accurate 
stability results, although a step size of Au = 0.01 and 
avalueofq, = 10 were sufficient to provide accurate 
numerical results for the main flow. This was verified 
by using a supercomputer with a larger memory 
capacity. 

RESULTS AND DISCUSSION 

To determine the stability and instability domains 
and to obtain the critical values of Grashof number 
(i.e. the minimum Grashof numbers for the incipiency 
of the vortex instability), neutral stability curves (i.e. 
the Grashof number vs wave number curves) were 
obtained. Numerical computations were first per- 
formed for the three-equation non-parallel flow 
model. The neutral stability curves for angles of incli- 
nation C$ ranging from 0 to 70” from the horizontal 
with IZ = 0 (the uniform wall temperature, UWT, 
case) are plotted in Fig. 1 for fluids having Prdndtl 
number of Pr = 0.7 and 7 which are typical for air 
and water, respectively. The results for 4 = 0” (i.e. the 
horizontal flat plate) are taken from ref. [l5]. It can 
be seen from Fig. 1 that for a given Prandtl number, 
the neutral stability curve shifts right-upward with 
increasing angle of inclination from the horizontal, c$. 
That is, the flow becomes more stable to the vortex 

IO6 

Gr, 

- . . . . ..______ 
pr=7 

lOi 
0 1 2 3 4 5 

cy 

FIG. 1. The neutral stability curves from the three-equation 
non-parallel flow model, uniform wall temperature (UWT, 

n = 0), Pr = 0.7 and 7. 

mode of instability as the angle of inclination increases 
from the horizontal toward the vertical orientation. 
For a vertical flat plate, the critical Grashof number 
from the vortex mode of instability becomes infinity. 
This is to be expected, because at the vertical orien- 
tation there is no buoyancy force component normal 
to the plate and hence the vortex instability of the flow 
does not take place. 

For the three-equation non-parallel flow model, the 

critical values of the non-similarity parameter 
< = (Gr, cos c$/S) “’ tan C#I (denoted by t*), the critical 
Grashof numbers Grz, and the corresponding critical 
wave numbers c(* from the present calculations are 
listed in Table I for the n = 0 (UWT) case. 

The neutral stability curves from the six-equation 

non-parallel flow model for the case of IZ = 0 (UWT) 
are plotted in Fig. 2 for different inclination angles, 
4. The results for 4 = 0” (i.e. the horizontal flat plate) 
are also from ref. [15] since the six-equation model 
reduces to the three-equation model when 5 = 0 (i.e. 
4 = O’,). It is noted here that to save the computation 
time and cost for the six-equation model, neutral sta- 
bility curves were not obtained for inclination angles 
4 < 15” for Pr = 0.7 and for C$ < 10’ for Pr = 7. This 

was because a smaller step size, Ar) < 0.01 (i.e. a larger 
storage space for computations), was needed to obtain 
accurate results for the small angles of inclination. To 
cope with the numerical difficulties associated with 
this, however, one can employ an interpolation 
method to obtain the results between the small angles 
of inclination and 4 = 0”, because accurate numerical 
results for 4 = 0” are available in ref. [ 151. This can 
be seen and expected from figures of critical Grashof 
number vs angle of inclination, to be presented later. 

To compare the results between the six-equation 
and the three-equation non-parallel flow models, 
representative neutral stability curves for different 
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Table 1. Critical values of non-similar parameter, Grashof number, and wave number; three-equation 
local similarity non-parallel flow model ; uniform wall temperature (UWT, n = 0) 

Pr = 0.7 
Gr: cl* 

Pr = I 
Gr? 

Gr, 

0 0 
5 0.27524 

IO 0.61494 
I5 1.0271 
30 2.8802 
45 6.5671 
60 15.547 
70 32.387 

834.5 0.68803 
1547 0.77197 
2619 0.83395 
4284 0.88765 

17838 1.0437 
86368 I .2442 

582 680 I .5273 
3327371 I .8299 

0 56.3 0.94275 
0.16931 136.2 1.1402 
0.39624 290.9 1.2815 
0.69138 592.0 I .4068 
2.1448 4085 I .7839 
5.0923 24213 2.2486 

12.247 176 744 2.7247 
25.571 I 020 907 3.2059 

10’. 

106. 

105. 

104. 

103. 

f02. 

0 0.5 1 1.5 2 2.5 3 
& 

FIG. 2. The neutral stability curves from the six-equation FIG. 3. A comparison of the neutral stability curves between 
non-parallel flow model, uniform wall temperature (UWT, the three-equation and the six-equation non-parallel flow 

n = 0), Pr = 0.7 and 7. models, uniform wall temperature (UWT, n = 0). Pr = 0.7. 

inclination angles for then = 0 (UWT) case are shown 
in Fig. 3 for Pr =0.7 and in Fig. 4 for Pr = 7. One 
can see from these two figures that the six-equation 
non-parallel flow model gives rise to a larger critical 
Grashof number than that of the three-equation 
model, but at a smaller critical wave number. The 
neutral stability curves for the various n values, 
n = - l/3, 0 (UWT), l/3, and 1 are compared in Figs. 
5 and 6 for Pr = 0.7 and 7, respectively. In addition, 
the critical values of the non-similarity parameter 

c = (Gr, cos 4/S)” tan rj (denoted by t*), Grashof 
number Gr:, and its wave number t(* are listed in 
Tables 2 and 3 for n = - l/3, 0 (UWT), l/3, and 1. 
From Table 3, one can see that for Pr = 7, the critical 
Grashof number increases with increasing value of 
the exponent II for a given inclination angle C$ < 60’. 
However, for Prandtl number Pr = 0.7 (see Table 2), 
the critical Grashof number decreases with increasing 
value of the exponent n for angles 4 that are large. 
All of these trends can also be seen in Fig. 7 for 
Pr = 0.7 and in Fig. 8 for Pr = 7. 

IWTJ 

FIG. 4. A comparison of the neutral stability curves between 
the three-equation and the six-equation non-parallel flow 

equation non-parallel flow models for Pr = 0.7 and models, uniform wall temperature (UWT, n = 0), Pr = 7. 

Figures 9 and 10 show the critical Grashof numbers 
from the present analysis based on the three- and six- 



Natural convection on inclined flat plates 215 

107. 

18 

Grx 18 

104 

103 

lO2 Nan~srallel Flow 16 EsnsJ 
~onparaflel Flo~(3 EqnsJ -------------- 

0 0.5 1 1.5 2 2.5 3 
cy 

FIG. 5. The effect ofn on the neutral stability curves, Pr = 0.7. 

FIG. 6. 

10S, I 
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The effect of n on the neutral stability curves, Pr = 7. 

7, respectively, for the y1 = 0 (UWT) case. Included in 
the figures for comparison are results from the parallel 

flow model reported in ref. [lo]. It can be seen from 
these figures that the critical Grashof numbers from 
the three-equation non-parallel flow model are about 
one order of magnitude larger than those from the 
parallel flow model [IO]. The critical Grashof numbers 
from the six-equation non-parallel flow model are still 
much larger than those of the three-equation model, 
about one and two orders of magnitude larger for 

Pr = 0.7 and 7, respectively. From the comparison 
among these three sets of results, it can be concluded 
that the more rigorous non-parallel flow analysis, 
which takes into account the streamwise dependence 
of the disturbances, predicts critical Grashof numbers 
that are larger than those predicted by the parallel 
flow analysis. 

It is interesting to compare the vortex instability 
results from the present analysis based on the six- 



216 H. R. LEE et cd. 

0 f5 30 45 60 75 90 

cp w3greel 

FIG. 7. The effect of n on the critical Grashof numbers, 
Pr = 0.7. 

equation non-parallel flow model with previous 
results from the parallel flow analyses and with avail- 
able experimental data in the literature [2, 7, 8, 10, 1 I, 
14, 231. Such a comparison is made in Fig. 1 I for 
n = 0 (UWT) and in Fig. 12 for n = l/3 (- UHF). 
From these two figures it can be seen that the critical 
Grashof numbers predicted by the six-equation non- 
parallel flow model are about two orders of magnitude 
larger than those from the parallel flow analysis, and 
are in qualitative agreement with available exper- 
imental values for air (Pr = 0.7) and water (Pr = 7), 

particularly for the latter. 
It is noted here that both the parallel flow model 

and the three-equation non-parallel flow model 
predict, for all angles of inclination, critical Grashof 

FIG. 8. The effect of n on the critical Grashof numbers, 
Pr = 7. 
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FIG. 9. A comparison of the critical Grashof numbers 
between the non-parallel flow model and the parallel flow 
model, uniform wall temperature (UWT, n = 0), Pr = 0.7. 

numbers, Gr:, that are larger for Pr = 0.7 than for 

Pr = 7 (see Figs. 11 and 12, and compare Figs. 9 and 

10). On the other hand, the six-equation non-parallel 

flow model yields smaller Cr.: values for Pr = 0.7 as 
compared to Pr = 7 for most of the inclination angles 
from the horizontal that are not very small (i.e. C$ > 8” 
for the case of n = 0 and qf~ > 5” for the case of 
n = l/3). The reason for such a change in the ordering 
of the Gr: vs qb curves among the various models for 
the two Prandtl numbers is not clear and cannot be 
explained. A thorough checking has concluded that it 
is not due to numerical errors. In addition. it should 

n-0 IUWTJ 

101 ’ ’ ’ ’ * ’ ’ 
0 15 30 4.5 60 75 90 

Q (degree) 

FIG. 10. A comparison of the critical Grashof numbers 
between the non-parallel flow model and the parallel flow 

model, uniform wall temperature (UWT, n = 0), Pr = 7. 

# 1degreeJ 

FIG. 11. A comparison of the critical Grashof numbers 
between analyses and experimental data, uniform wall tem- 

perature (UWT, n = 0). 

be mentioned that the critical Grashof numbers for 
very small angles of inclination (i.e. 4 N 00) are not 
expected to be very accurate, because the mainflow 
solution based on the boundary-layer assumption 

does not have good approximations when Gr, < 10’. 
Because no experimental studies on vortex insta- 

bility of natural convection flow on inclined flat plates 

are available under the power-law wall temperature 
variation except for the UWT case (n = 0) and UHF 
case (n N l/3), the present results from the non-par- 
allel analysis, other than the cases of n = 0 and l/3, 
cannot be verified directly with experimental data. 

log- I I I . . I ” I 

0 

= 18. n 1/3 (UHF1 

pr=*,7__ . .._.____. _ o 
pr=, -. 

Q idegree) 

FIG. 12. A comparison of the critical Grashof numbers 
between analyses and experimental data, uniform surface 

heat flux (UHF, n N l/3). 
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CONCLUSION 

In this paper, vortex instability of laminar boun- 
dary-layer flow in natural convection on inclined flat 
plates with a power-law variation in wall temperature 
has been investigated analytically by employing the 
linear non-parallel tlow theory. Neutral stability 
curves, critical Grashof numbers, and critical wave 
numbers are presented for fluids having Pr = 0.7 and 
7 over a wide range of inclination angles from the 
horizontal, 0” < 4 < 70 ‘, for a range of exponent 
values n from - l/3 to 1. In general, it is found that 

the flow becomes more stable to the vortex mode of 
instability as the inclination angle from the horizontal 

increases. The more rigorous non-parallel flow model, 
which takes into account the streamwise dependence 
of the disturbances, predicts critical Grashof numbers 
that are larger than those predicted by the parallel 
flow model. In addition, the six-equation non-parallel 
flow model has yielded critical Grashof numbers that 
are in close and qualitative agreement with available 
experimental data for the cases of heating by uniform 
wall temperature (UWT, n = 0) and uniform surface 
heat flux (UHF, n = l/3). 

It is also found that for a given value of the exponent 
n, the critical Grashof number increases with increas- 
ing Prandtl number for larger inclination angles. 
However, this trend is reversed for smaller angles of 
inclination. For Pr = 7, at a given inclination angle 
4 < 60, the critical Grashof number increases with 
increasing value of the exponent n. However, for 
Pr = 0.7 the critical Grashof number decreases with 
increasing value of the exponent n at larger inclination 
angles, but this trend is reversed for small angles of 

inclination (4 = 0). 

Arkrzow,l~~9emmt---Part of the numerical results reported in 
this paper was obtained by using a CRAY X-MP Super- 
computer through the facility of National Center for Super- 
computing Applications (NCSA) at the University of 
Illinois. 
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APPENDIX 

The coefficients in equations (44)-(49) are given by 

(I, = -c,, u2 = C2-dZ, a1 = mm?f”(Gr,,cosd/5) ‘, 

a4 = 55, as = -3ls’, 

h, = -c,, b> = C, -261’. 

b, = 2f”+r’C,, b, = r4+a’C2, 

h, = -(a2/5)(Gr, cos4/5)- “‘C3, 

h, = - Scc’(Gr, cos 4/S) ’ 5, 

b, = -3(-f’, h, = -35f”. b, = 3a’tf’. 

d, = -PrC,, d, = Pr f-a’, d, = -(Pr/5)C,, 

d, = -PrU’(Gr,cos4/5)“‘, d, = -3Prlf’. 
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e, = -c,, e2 = Cz-C4+2f’-u’, 

e, = -Sf”(Gr,cos&S)‘~‘, e4 = 55, e, = C,, e6 = C,, 

e, = - S(Gr, cos 4/5)‘:‘(C, +f”/<), c8 = 5, 

f, = -c,, fz = 2f’-2a*, .f, = C,a2-f”-35C,, 

.fd = ~4+~Z(C~+C,-~f’), f5 = b,, f6 = b,, 

f7 = C6, fk = Cl", fg = 2c,-azc6,, 

.f,o = a'c,, fil = (a2/5)(Gr,cos~/5)~“‘[(C,/5)-C,1, 

.f, z = - (Sa’/Q(Gr, cos 4/S) I”, 

g, = -PrC,, g2 = -a2-Pr(C4-33f’), 

g, = -(Pr/5)C,, g4 = -Pr@(Gr,cos4/5)“‘, 

g5 = Pr C,, ga = PrC13, 97 = - (pr/5)C, r, 

gx = -(Pr/C)(Gr,cos$1/5)“~C,~ (Al) 

where Cr(5, q) through C,,(<, q) are given by 

c,(t,v) = -3(f+tafm 

ckL4 = 2sf”-f’-xariat, 

c,(i’,d = Wf++~f’-6f- 12r75af’lay 

+ 125 afiat+sr* a:f at’, 

cdt,d = 5f’+3twiae. c,(t,d = 35aejai;-zae’, 

cdt,d = 6wat+xa2fiat*, 
c,(t,d = 2rlaf”ia5-4a~ia5-35azf’ia52. 

cdt, d = 4r1* ayp- 10~ ay/ag+6ijfiag 

+305a:fla+ 12r15azf’/a52+952a’fla53, 

Cdt. 9) = via<, cd, 9) = 8 af’iat f 35 azf'iap. 
c, ,(r, if) = 3 aejat-2rl awjag + 35 a%/ap, 

c,,(t,td = @+tapjat, c,,gv) = zff’jat. (~2) 

INSTABILITE THERMIQUE NON PARALLELE DE LA CONVECTION SUR DES 
PLAQUES PLANES INCLINEES ET NON ISOTHERMES 

R&me-On &die analytiquement en theorie lineaire, les caracteristiques de l’instabihte tourbillonnaire 
de l’tcoulement laminaire de couche limite, dans la convection naturelle sur des plaques planes inclinees, 
chauffees par dessous, avec une temperature de surface variable comme T,(x) - T, = Ax”. L’ecoulement 
principal est bidimensionnel et on prend en compte la dependance dans la direction de l’ecoulement des 
fonctions amplitude de perturbation. On presente les courbes de stabilitt neutre, les nombres de GRASHOF 
critiques et les nombres d’onde critiques correspondants pour des fluides ayant Pr = 0,7 et 7, pour des 
angles d’inclinaison 0” < 4 $ 70” a partir de l’horizontale, pour un exposant n entre - l/3 et 1. Pour un 
nombre de PRANDTL et n donnes, l’ecoulement est plus stable, vis-a-vis de I’instabilite tourbillonnaire, 
quand I’angle d’inclinaison augmente. La dependance des perturbations dans le sens de l’ecoulement 
conduit a une stabihsation de l’ecoulement principal cc qui fait que les predictions s’accordent qualitative- 

ment avec les donnees experimentales. 

NICHTPARALLELE THERMISCHE INSTABILITAT BE1 NATURLICHER KONVEKTION 
AN NICHTISOTHERMEN GENEIGTEN EBENEN FLACHEN 

Zusammenfassung-Das Verhalten laminarer Grenzschichtstromungen im Hinblick auf Wirbelinstabilitat 
bei natiirlicher Konvektion an einer von unten beheizten geneigten ebenen Platte mit veranderlicher 
Oberflachentemperatur (T,(x) - T, = AY) wird analytisch mit der Theorie linearer Losungen untersucht. 
Dabei wird ein Model1 fiir nichtparallele Striimung angewandt, bei dem die stationare Hauptstromung 
zweidimensional behandelt wird und Veranderungen der Stiirungsamphtude in Striimungsrichtung beriick- 
sichtigt werden. Die Kurven neutraler StabiIitHt wie such die kritische Grashof-Zahl unddie entsprechende 
kritische Wellenzahl werden fiir foleende Bedineunaen daraestellt: Prandtl-Zahl des Fluids (Pr = 0.7 und 
7); Neigungswinkel(0” < 4 < 70” gegeniiber der Waagererhten) ; Exponenten n (- l/3 < n‘< 1). Es zeigt 
sich, daI3 bei gegebenen Werten der Prandtl-Zahl und des Exponenten n die Stromung im Hinblick auf die 
Wirbelinstabihtlt stabiler wird, wenn der Neigungswinkel von der Horizontalen zunimmt. Weiterhin ergibt 
das nichtparallele Striimungsmodell mit lokaler Nichtahnhchkeit eine gr6Bere kritische Grashof-Zahl als 
das Model1 mit lokaler Ahnhchkeit. Die Ergebnisse der vorgestellten Untersuchung fur nichtparallele 
Striimung werden mit den entsprechenden Ergebnissen friiherer Untersuchungen an paralleler Striimung 
und mit verfiigbaren Versuchsdaten vergleichen. Die Veranderung der Stiirungen in Stromungsrichtung 
fiihrt zu einer Stabilisierung der Hauptstromung. Dies fiihrt dann dazu, daI.3 die vorgestellten Rechen- 

ergebnisse qualitativ gut mit verfiigbaren Versuchsdaten iibereinstimmen. 
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HEI-IAPAJLWJIbHAR TEI-IJIOBAII HEYCTO@#iBOCTb 
ECTECTBEHHOKOHBEKTMBHOI-0 TEgEHMII HA HEM30TEPMMYECKMX 

HAKJIOHHbIX l-IJIOCKkiX IIJIACTkiHAX 

AmIoTawn-HaocHoneneHeiiHoiiTeopaaasanesapyiorcn xapaKTepecr5iKu Btixpe~0ii HeycTo+ninocre 

naMAHapHOr0 Te'teHBIl B nOrpaHH'fHOM CnOC B yCnOBHKX eCTeCTBeHH0i-i KOHBeKUHH Ha HarpeBaCMbIX 

CHH3y HaK,lOHHbIX IIJIOCKHX IlnaCTHHaX IIpH nepeMeHHOfi TeMIlepaTypC IlOBepXHOCTH T,(X)- T, = Ax”. 
A~ane3 nposoAHTcK c kicnonb30naHneM Monem HenapannenbHoro TeqeHHn, B ~0T0p0fi ycToilsaeoe 
OCHOBHOeTe'teHHepaCCMaTpI,BaeTCK KaKAByMepHOeH yWTbIBaeTCK 3aBHCHMOCTb~yHKUHiiaMnn~TyAbl 

BOSMyUeHBI OT pZCTO5IHH5i BHN3 II0 IIOTOKy. npeACTaBneHbl KpHBbIe HefiTpanbHOrO paBHOBeCHB, a 

TaKne KpHTHWCKHe YHCna rpaCrO+Ja B COOTBeTCTByIOLlIHe KpLiTWVZCKSie BOJlHOBbIe SHCna AJIK XHAKOC- 

Teii c Pr= 0,7 B 7 ~4 wana30He ti3MeHeHnn yrna HaKnoHa 0" <f$< 70” oTwcnTenbH0 ropH3oHTane B 

5iHTepsane H3MeHeHnn noKa3awin cTeneHti n 0T -l/3 no l.IJpa AaHHbIx 3HaqeHkiBx 48cna IIpaHATnn n 

noKa3aTene cTeneHs4 n HalAeBo,uTo TeqeHAe npe6nwKaeTcn K ekixpeeoMy penw~y HeycToikinocT5i no 

Mepe yeenuqeHnn yrna HaKnoHa oTwcHTenbH0 ropa30HTane. KpoMe TOrO, npa UCnOnb30BaHHB 

MoAenn noKanbHoii HeanToh4oAenbHocrti HenapannenbHoro TeqeHUs nonyqaeTcn 6onee BbtcoKoe 3Haqe- 

Hne KpaTsrecKoro wcna rpacro+a, 4eM B h4oAenn noKanbHofi anToMoAenbHocTH HenapannenbHoro 

Te'IeHHI. Pe3ynbTaTbI aHanH3a HenapaJUIenbHbIX Te'IeHd CpaBHHBaKITCB C AaHHbIMH, IlOny'feHHbIMB 

patsee Ha 0cHone aHanH3a napannenbHbIx TeqeHaii,a c iiMeIo4WMsicn 3KcneptiMeHTanbHbwti pe3ynbTa- 

TaMU. 3aBHCHMOCTb B03My",eHWii OT paCCTOKHRK BHU3 n0 nOTOKy IIpHBOAHT K ma6snexaqaa OCHOB- 

Hero noToKa, 6naroAapK reMy Ha6nWIaeTCx KaqecrneHHoe cornacwe hfexAy TeopeTusecKaMn 


